COMPRESSOR PERFORMANCE DISPLAY APPLICATION CONTROL PACKAGE

MAY 2012

The Performance Display Option computes flow rate, cumulative flow, heads, efficiencies, and other health and performance information for the compressor and fuel system.

PERFORMANCE DISPLAY CHANNELS		ITHM HEAD	Isothermal head. Head comparing the process to	
Display Heading OSTD	Description Standard flow through the compressor. Includes	IGAS POWER	Ideal power required to perform the compression in an isothermal process. Always less than power required in an edisbatic process.	
	recycle if any.		required in an adiabatic process.	
QSTD/P1	Semi-dimensional flow.		shaft power. A good measure of actual isotherma	
QSTD/P2	Semi-dimensional flow.		efficiency.	
QMASS	Mass flow.	ITOTAL EFF The total efficiency of the compression pro		
QVOL1	Inlet volumetric flow.		compared against a 100% efficient compressor	
QVOL2	Outlet volumetric flow.		with infinite intercooling steps, holding the gas a constant temperature	
SURGE MARGIN	Surge margin. More exactly, "the percentage flow could be reduced before reaching the calibrated surge limit at the existing suction and discharge pressures."	Calculated Subfac	Calculated Subfactors	
		CD CALC	Flow factor used in the equation QSTD(mmscfd) CD SQRT (HCxP) where HC is in inches water and P is in psia	
24 HR Q	Yesterday's compressor cumulative flow, midnight to midnight.	Z1	Suction gas compressibility calculated from FPV1 using AGA report No 3 algorithm Valid only for	
DAYS	Day's accumulating flow since the last totalizer		natural gas SG between .55 and 1.	
	reset.	Z2	Discharge gas compressibility.	
CUM Q	Cumulative compressor flow.	ZAVG	Average of Z1 and Z2.	
P1/P2 ADIA HEAD	Compressor ratio. Adiabatic head. Adiabatic and isentropic are used	CD-FTB	Temperature base factor per AGA report No.3 (usually close to 1.0).	
	interchangeably in the compression industry.	CD-FTF	Flowing temperature factor per AGA report No.3.	
POLY HEAD	Polytropic head.	CD-FG	Specific gravity factor per AGA report No.3.	
FUEL Q	Fuel flow.	CDFPV1	Suction gas supercompressibility factor,	
24HR FQ	Yesterday's cumulative flow, midnight to midnight.		calculated.	
CUM FQ FUEL POWER	Cumulative fuel flow. Ideal fuel power. The power that could be generated by the existing fuel flow if the driver	CALC CDFPV2	Discharge gas supercompressibility factor calculated.	
		CALC CD-Y	Expansion factor per AGA report No.3.	
GAS POWER	Ideal gas power. The power that would be required to compress the existing gas flow from the existing suction pressure and temperature to the existing discharge pressure in an adiabatic	CD-FR	Reynolds number factor, per AGA report No.3.	
		(N-1)/N	Polytropic exponent calculated from K, P1, P2, T1 T2.	
		(K-1)/K	Adiabatic exponent.	
CIADIA EFF A	compression. Adiabatic efficiency, from T1, T2, P1, P2 and K.	CD-FPB	Pressure base factor, per AGA report No.3 (usuall close to 1.0).	
	Accuracy is very sensitive to accuracy of K and of temperature measurement.	FE	Look-up table correction factor as a function of HC. Usually used to correct "eye of impeller" flow	
POLY EFF	Polytropic efficiency, from T1, T2, P1, P2 and K. Accuracy is very sensitive to accuracy of K and of temperature measurement, and always slightly higher than adiabatic efficiency.	measurement results.		
		Calibration Entries	Suction concernments initial source floor	
			Suction supercompressibility source flag.	
SHAFT EFF	Ideal gas power divided by shaft input power. This is a better value for adiabatic efficiency than ADIA EFF. Takes into account gearbox, lube, and		CD flow factor course flag, compressor suction of	
		CD FLG	discharge.	
TOTAL EFF	seal losses. Ideal gas power divided by ideal fuel power.	FLOW	calculated.	
	Takes into account driver efficiency, gearbox losses, lube and seal losses, compressor efficiency. For a gas turbine driving a compressor through a gearbox, this number may be on the order of 17%. This number is not particularly sensitive to accurately knowing K nor to T2 measurement accuracy. This is a useful channel for monitoring the overall health of the train.		Value of CD, if entered or not calculated.	
		BSLOPE	factor FR. Assumes viscosity is typical for low gravity pipeline natural gas.	
		BETA4	Used in calculating expansion factor Y.	
		FUEL CD	Fuel flow factor.	
		F XMTR	Fuel meter type flag.	
FUEL/Q PCT	Fuel flow as percent of compressor throughout. For low ratio pipeline compressors typically below 1%. For high ratio compressors, such as gas lift compressors, it can be as high as 10%. This is a good channel to monitor to see the effects of changes to the external process on fuel cost	FLG CD-PB	CD pressure base.	
		CD-K	Ratio of specific heats. Cp/Cy.	
		CD-TB	CD temperature base.	

Display	
Heading	Description
FPV1CON	Manually entered suction supercompressibility factor, if manually entered.
FPV2CON	Manually entered discharge supercompressibility factor, if manually entered.
CMPRSR ID	Compressor identity number for printout.
METRIC	Imperial/metric units selected flag.
FLAG HC1-HC10	HC/FE look-up table entries, to correct for non- linear or
FE1-FE10	non-square root flow element.
M1-M60	Conversion factors to correct imperial values to selected metric or SI values.
C200-C300	Transmitter configuration values.

REQUIRED MEASUREMENTS

Each of the following measurements may be either input by transmitters or keyboard entered.

Channel	Description
1.	Compressor orifice differential
2.	Compressor differential pressure
3.	Suction pressure
4.	Suction temperature
5.	Discharge pressure
6.	Discharge temperature
7.	Shaft input power
8.	Driver fuel flow
9.	Gas specific gravity

CONFIGURATION

The 9500-ASC(M) has approximately 200 configuration channels per stage for entry of flow measurement, transmitter, and constant factors.

PERFORMANCE DISPLAY UNITS

All calculations are performed internally with imperial units. In metric mode, each result is separately converted to metric by multiplying its companion metric conversion factor. The display is easily switched between imperial and metric units.

APPLICATION SERVICES PACKAGE

For the Performance Display option, the Application Services Package includes all required calibration and configuration for the particular compressor and application. Display is in units selected by the owner, plus imperial units.

SCOPE OF SUPPLY

Catalog item 9500-PERFORMANCE Display Option includes:

 Compressor performance and process displays, added to a 9500-ASC(M) application control package operating on a PLC hardware platform.

Not included:

- 500-ASC(M) Multiple-Body Integrated Compressor Control application control pacakge (required).
- PLC hardware.

 Petrotech, Inc.
 Phone:
 (504) 620-6600

 151 Brookhollow Esplanade
 Fax:
 (504) 620-6601

 New Orleans, Louisiana 70123
 Email:
 info@petrotechinc.com

 USA
 Website:
 www.petrotechinc.com

 This document is a Petrotech, Inc. copyrighted intellectual property and may be changed at any time without notice.
 Phone:
 (504) 620-6601